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A Galerkin method is used to study the two-dimensional modes of oscillatory 
convection in a gravitationally modulated fluid layer with rigid, isothermal boundaries 
heated either from below or from above. Nonlinear solutions are obtained for 
dimensionless frequencies w (frequency is made non-dimensional with the timescale 
$ / K  where d is the depth of the fluid layer and K is the thermal diffusivity) in the range 
100-3000, dimensionless accelerations e (eg is the amplitude of the externally imposed 
oscillatory vertical acceleration and g is the constant vertical acceleration of gravity) in 
the range of 1-104, and Prandtl numbers P in the range 0.71 (air) to 7 (water). The 
problem of convective onset is explored for a broader range of parameters than 
heretofore considered, including Prandtl numbers between 0.7 1 and 50. Both 
synchronous and subharmonic modes of convection are identified and it is found that 
finite-amplitude synchronous convection can be unstable to subharmonic modes. 

1. Introduction 
Studies of thermal convection in externally modulated fluid layers have mainly dealt 

with the weakly nonlinear motions near the onset of convection. These include the 
early work of Venezian (1969), Gresho & Sani (1970), Rosenblat & Herbert (1970) and 
Rosenblat & Tanaka (1971) (see also the review by Davis 1976). The paper by Burde 
(1970) and other Russian works that are not well known in the Western literature are 
also relevant, and these have been reviewed in Gershuni & Zhukovitskii (1976). More 
recently this body of work has been extended by Roppo, Davis & Rosenblat (1984), 
Ahlers, Hohenberg & Lucke (1985a) and Hohenberg & Swift (1987). A number of 
experiments have also been performed on the influence of modulation on the onset of 
convection (Finucane & Kelly 1976; Ahlers, Hohenberg & Lucke 19853; Niemela & 
Donnelly 1987; see also the recent review by Donnelly 1990). Reasonable agreement 
between theoretical predictions and experimental measurements has been obtained. 

As shown by Gresho & Sani (1970), the Rayleigh number for onset of synchronous 
convection increases with increasing frequency of modulation for a layer oscillating 
with constant vertical displacement amplitude until a certain frequency is reached at 
which the onset is in the form of subharmonic motions. Synchronous and subharmonic 
modes of convection also occur at finite amplitude, as demonstrated by Gresho & Sani 
(1970) and more recently by Biringen & Peltier (1990). However, relatively little is 
known of the quantitative effects of modulation on the onset of convection over a wide 
range of modulation frequencies and amplitudes and Prandtl numbers, and even less 
is known about the heat transfer properties and stabilities of the nonlinear modes of 
convection, Because the oscillations tend to affect the phase relationships between the 
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temperature and velocity fields, the heat transport properties may be affected by the 
modulation even more than the critical Rayleigh number for onset of convection. 
These nonlinear effects are of basic interest, but they also have important applications, 
e.g. crystallization from a melt in the low-gravity environment of orbiting space 
stations. 

The research presented in this paper addresses both the onset of convection and the 
finite-amplitude motions of a bottom or top heated fluid layer under the influence of 
a gravitational modulation, i.e. an externally imposed oscillatory acceleration in the 
same direction as the steady acceleration of gravity. Prandtl numbers in the range 
0.71-50, dimensionless frequencies in the range 30-6000 and non-dimensional 
amplitudes of the imposed oscillatory acceleration up to several thousand are 
considered. The motions are either synchronous for small values of the frequency or 
subharmonic for large frequency values. The stability of the solutions to disturbances 
confined to two spatial dimensions is investigated. 

2. Mathematical formulation 
2.1. Basic equations 

We consider a vertically oscillating horizontal Boussinesq fluid layer of thickness d 
which is heated from either above or below. The dimensionless equations of continuity, 
motion, and temperature are: 

v - u = o ,  (2.1) 

V"+k(l +ecoswt)-Vvr= - u vu+- , P l (  - Z) 
(2.3) 

ae ve+m - 11 = 0 - we+-. 
at 

In (2.1H2.3) we use das a lengthscale, & / K  as a timescale, and AT/R as a temperature 
scale, where A T  is the temperature difference between the upper and lower boundaries 
defined to be positive for bottom heating, K is the thermal diffusivity, and R is the 
Rayleigh n m k r  defined by 

i%gATd3 R =  
KU 

with h the thermal expansivity, g the steady acceleration due to gravity (gravity points 
vertically downward in the direction opposite to the unit vector k in the upward z- 
direction), and u the kinematic viscosity. The temperature difference A T  and R are 
negative for heating from above. The non-dimensional convective velocity is u, the 
dimensionless pressure is r, and 8 is the dimensionless deviation in temperature from 
the steady conductive state with a linear temperature us. height profile. The Prandtl 
number P is U / K .  The imposed vertical acceleration has non-dimensional frequency w 
and dimensionless amplitude e (scaled by g). The dimensionless horizontal coordinate 
is x and the origin of the coordinate system is at the midplane of the layer. The 
dependence of convection on the physical conditions of the problem is expressed by the 
four dimensionless parameters R, P, w and e and the boundary conditions at the top 
and bottom rigid, isothermal surfaces. 

In the Boussinesq approximation, and for two-dimensional motions, the equation of 
continuity (2.1) can be eliminated from the problem by introducing the following 
general representation of the solenoidal velocity field: 

v = & $  (2.5) 
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where the operator 6 is defined by 

s $ = V x ( V x k # ) .  (2.6) 
Upon substitution of (2.5) and (2.6) into (2.2) and (2.3) we obtain the following 
equations for the scalar variables # and 8 :  

ax(v44--(1 +scoswt)e) 

(2 * 8) 
ae 

v20- mix 4 = a;z $az 0- a;x $az e+-. 
at 

The boundary conditions are given by 

$ = a z $ = e = o  at ~ = + f .  (2.9) 

2.2. Finite-amplitude convection 
Because of the externally imposed time dependence represented by (1 + E cos wt) in 
(2.2), the Galerkin solution must be sought in the form 

4 = x @flAY cos pot + &PAv sin put> (cos h a 4  g”(4 = c. bflA” dflh + &PA” &A”’ 
P &’ PAV (A+v)even 

(2.10) 
B = cos pot  + bPAV sin pot) (cos ~ a x ) f ” ( z )  = S,,, 8FA, + bpAu iFA,. 

PA” (A+”) even 

(2.11) 
The functions 

sinh (9;” z )  sin (q, z )  
sinh (:jjv) sin (&ijv) - for v even 

(2.12) 
cash (Y;(u+l) 4 cos (&U+l) 4 for 

- odd 
cosh (iYi(,+l)) cos GY;(v+lJ 

A(.) = sin [ux(z +$)I (2.13) and 

satisfy the boundary conditions on z = f f for 4 and 8, respectively. The quantities YiU 
and are determined from the positive roots of 

1 g,(z> = 

coth (if) -cot (3) = 0, 
tanh (if) - tan (if) = 0, 

(2.14) 
(2.15) 

and are listed in Chandrasekhar (1961). 
The summations in (2.10) and (2.11) are constrained by a truncation parameter N 

such that 
P + A + V  < N. (2.16) 

All coefficients outside this range are neglected. In the numerical procedure the 
truncation parameter is increased until a further increase produces a negligible change 
in the solution. In practical terms, N is increased until a quantity such as the Nusselt 
number changes by less than a few percent when N is replaced by N-2. 
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After substitution of (2.10) and (2.1 1 )  into (2.7) and (2.8), multiplication by $7Kp and 
OYKp and averaging over the fluid layer, a set of nonlinear algebraic equations for the 
unknowns asAv and baAv is obtained: 

(2.17) 

C K p P A V  b/?;\V+ Rl"yKpBAV a p A V  + $KpPh!J&T b8p?l +a 0BK bflAV = '* (2.18) 

Repeated subscripts in (2.17) and (2.18) indicate summation over h and v with A + v 
even. The calculation of the integrals P, . . . , 18 in these expressions is straightforward, 

(2.19) e.g. 

where the angle brackets indicate an average over the fluid layer and time. In the above 
expressions, s = 1 for synchronous convection and s = 2 for subharmonic convection. 

The set of nonlinear algebraic equations (2.17) and (2.18) are solved by the 
Newton-Raphson iteration procedure. As the solution nears convergence, the 
procedure is second-order correct in the value of the coefficients, thus ensuring a 
solution in a minimum number of iterations, usually five or six to converge the solution 
to an error of 

The Galerkin representation (2.10) and (2.11) can also be used to solve the linear 
problem of the onset of convection in which the nonlinear terms in (2.7) and (2.8) are 
neglected. In this case, only terms with h = 1 are taken into account in the 
representations (2.10) and (2.11). 

2.3. Stability of finite-amplitude solutions 
We investigate the stability of the finite-amplitude synchronous and subharmonic 
modes of convection to two-dimensional disturbances of different temporal character. 
The equations for the disturbance field 6, e" are obtained by replacing q5 and O in (2.7) 
and (2.8) by $ + 4 and 8 + e", respectively, and subtracting from the resulting equations 
the equations for the finite-amplitude solution q5, 8: 

1 w 
IlypaAv + I"yppAv + p y . l . n v + n  aspn + ~p GKpphv = 0, 

S 

G K p P A V  = - <$YKp(' + "OS (swt)> ' /?A,>, 

v4a;, 6 - (1  - cos (sot)) a;, e" 

(2.21) 

Terms that are quadratic in the disturbance amplitude in (2.20) and (2.21) have been 
neglected. As in the nonlinear analysis above, the parameter s assumes the value 1 for 
synchronous convection and 2 for subharmonic convection. For the numerical solution 
of (2.20) and (2.21) by the Galerkin method, we expand the functions 6 and e" as 

qT = C. {cos hax (iiiiv cos pwt + ii;:,, sin pwt)  

+ sin hax (i i~~,cos pwt + 6;" sin Pwt))g,(z) eiLX+&, (2.22) 

8 = C {cos  ax (hj~vcos pot + 6jiu sin wt) 
BAV 

+sinhax(&,cospwt + ~ ~ ~ u s i n p w t ) } f , ( z ) e i z z + a t .  (2.23) 
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Substitution of (2.22) and (2.23) into (2.20) and (2.21), multiplication by #,&, $&, @p, 

@&, and similar &terms, and averaging over the fluid layer yields a set of linear 
algebraic equations for the unknown coefficients 2&, 2i:v, etc: 

(2.24) 

and analogous expressions with leading terms l$ppAy i& 5&pAv 2gv and 
Similarly, from (2.21) we obtain 

iiiiv. 

(2.25) 

and analogous expressions with leading terms q$pAv b&, P1 @,,. The 
repeated subscripts in these equations indicate summati::% &;ore. This system of 
linear homogeneous equations constitutes an eigenvalue problem for the eigenvalue c. 
Application of ordinary numerical eigenvalue procedures requires that the indices p, A, 
and v be combined into a single subscript and coefficients i l l ,  ;I2, etc. be combined 
sequentially to form a single vector. 

J2’ and 

3. Numerical results 
3.1. Onset of convection 

Before presenting the nonlinear solutions we extend the analysis of Gresho & Sani 
(1970) for the onset of convection to a much larger region of parameter space. Figure 
1 shows the critical Rayleigh number R, for onset of convection at Prandtl number 7 
(water at room temperature) for various values of c/o2. Figure 2 gives the 
corresponding values of the critical wavenumber a,. If the external acceleration is 
applied by oscillating the fluid layer vertically with dimensionless frequency w and 
dimensionless maximum displacement 6, then e / d  can alternatively be written SFr, 
where Fr is a Froude number defined by K2/gd3. The presentation in figures 1 and 2 is 
thus suited to comparison with experiments carried out by oscillating fluid layers with 
fixed amplitude and variable frequency. 

For a given e /w2  or SFr, there are two modes of convective onset. The synchronous 
mode at low frequency and the subharmonic mode at high frequency; R, increases with 
increasing w for the synchronous mode while it decreases with increasing frequency for 
the subharmonic mode (figure 1). The crossover frequency between synchronous and 
subharmonic convection decreases with increasing e/w2 or SFr; the value of R, at the 
crossover point also decreases with increasing ~ / d .  Synchronous convection extends 
to larger w for smaller values of e/w2 = SFr while subharmonic convection occurs at 
smaller w for larger values of e/w2.  For sufficiently small w, R, for synchronous 
convection is independent of e/w2 = 8Fr; the increase of R, with w for synchronous 
convection occurs over a narrow range of w near the crossover frequency to 
subharmonic convection. Synchronous convection occurs at smaller values of a, than 
subharmonic convection (figure 2). For synchronous convection at sufficiently small w, 
a, = 3.1 16 (given as 3.117 in Chandrasekhar 1961) independent of €/a2 = 6Fr; a, 
decreases with increasing w in a narrow range of w near the crossover frequency to 
subharmonic convection. The critical wavenumber for subharmonic convection 

22-2 
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2 x 104 I 

0 

FIGURE 1. Critical Rayleigh number R, for onset of convection in a gravitationally modulated fluid 
layer heated from below at P = 7 as a function of dimensionless frequency w for different values of 
the parameter e/w2 = SFr. At low frequency convective onset is in the form of synchronous motions. 
At high o convection begins subharmonically. 

10 

5 

i o l  102 103 6 x lo3 
0 

FIGURE 2. Critical wavenumber ac at the onset of convection versus dimensionless frequency o for 
P = 7 and for different values of e /w2  = SFr. The upper set of curves is for subharmonic motions and 
the lower set is for synchronous motions. 
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FIGURE 3. Critical Rayleigh number R, for the onset of convection in a gravitationally modulated 
fluid layer heated from below with e /wz  = 6Fr = as a function of dimensionless frequency w at 
various Prandtl numbers P. Subharmonic curves are on the right and synchronous curves are on the 
left. At w = 0, R, is 1708. 

generally increases with increasing w, although a, has a local minimum for e/w2 = 
SFr = lop3. The local minimum in a, for e/w2 = is matched by the change in 
curvature of R, us. w at this value of e/w2.  For sufficiently large w,  the values of a, 
for subharmonic convection tend to become independent of c /w2  = 6Fr. There is 
a discontinuous change in a, at the transition from synchronous to subharmonic 
convection. 

At sufficiently large w ,  R, is given by the asymptotic formula (Gresho & Sani 1970) 

At P = 7, the asymptotic regime in which (3.1) is valid lies at values of w > 6000 (figure 
1). The asymptotic regime of the validity of (3.1) is computationally more accessible for 
smaller values of the Prandtl number as can be seen in figure 3 which illustrates the P 
dependence of R, 0s. w for e/w2 = SFr = lop4. It is clear from the figure that 
increasingly large values of w are required to reach the asymptotic state given by (3.1) 
as P increases. At the largest value of w shown in figure 3, the numerically calculated 
R, is within 1 % of the prediction of (3.1) for P = 0.71 ; at P = 50, however, R, is a 
factor of nearly 2 larger than the prediction of (3.1) for w = 6000. 

The Prandtl number dependence of a, us. w is illustrated in figure 4 for e/w2 = SFr = 
low4. As in figure 2, it is seen that a, increases with increasing w at large w, but figure 
4 shows that the large-frequency limit of a, depends on P. As w-+ co and for fixed w,  
a, decreases with increasing P as does R, (figure 3); at the lower frequencies of 
subharmonic convective onset the dependences of ac and R, on P at &xed w are non- 
monotonic. Similarly, the dependences of a, and R, on P at fixed w for the synchronous 
modes of convective onset are non-monotonic (figures 3 and 4). 
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FIGURE 4. Critical wavenumber u, versus dimensionless frequency w for onset of convection at e/wa = 
8Fr = for various values of P. Upper curves are for subharmonic instability while lower curves 
are for synchronous instability. 
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FIGURE 5. Critical Rayleigh number R, for onset of convection in a modulated fluid layer heated from 
above at P = 7. SY denotes synchronous and SH subharmonic modes of convective onset. 
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FIGURE 6.  Critical wavenumber a, versus dimensionless frequency o for onset of convection in a 
gravitationally modulated fluid layer heated from above at P = 7. SY denotes synchronous and SH 
subharmonic modes of convective onset. 

For sufficiently large w convective instability is possible even for heating from above, 
as can be seen in figures 5 and 6 which show R, and a, us. w with e/wz = 6Fr as a 
parameter for P = 7. At a given value of e/w2 = SFr, convection with heating from 
above cannot occur until w reaches a critical value when convection sets in as a 
synchronous mode. The magnitude of R, decreases with increasing o for the 
synchronous mode. Synchronous heated-from-above convection is the mode of 
convective onset only over a limited range of w ;  with increasing o subharmonic 
convection rapidly replaces synchronous convection as the preferred mode of 
convective onset. The magnitude of R, decreases with increasing w for heated-from- 
above subharmonic convection. The smaller the value of e/wz = 6Fr the larger w must 
be for convection to occur in either the synchronous mode or the subharmonic mode. 
As w + 00, IR,I tends to a constant value that depends inversely on c/o2 = 6Fr, similar 
to the dependence in (3.1). 

The critical wavenumber a, for synchronous convective onset with heating from 
above increases rapidly with increasing w in strong contrast to the behaviour of a, us. 
w for bottom-heated synchronous convection (compare figures 2 and 6). Upon 
transition to subharmonic convective onset with heating from above and increasing w 
there is a dramatic and discontinuous drop in a, (figure 6). With further increase in w, 
a, increases for the subharmonic mode similar to the a, us. w behaviour for 
subharmonic heated-from-below convection (figure 2). As w tends to large values, a, 
us. w for subharmonic heated-from-above convection tends to become independent of 
e/w2 = SFr. The results of figure 6 show that a, continues to increase with increasing 
w for large w, contrary to the claim of Gresho & Sani (1970) that a, tends to a constant 
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wt/2n: 
FIGURE 7. (a) Kinetic energy of subharmonic convection in a modulated layer at P = 7, e = 3.162, 
w = 316.2, a = at = 5.0. The Rayleigh numbers of the curves, from the bottom upwards are 
R = 1 1  700, 12000, 13000, 15000,20000 and 80000. (b) Nusselt number us. ot/2n for subharmonic 
convection at P = 7, E = 3.162, and w = 316.2. The curves correspond to different values of R, 
labelled as in (a). 

as w +. GO. The change in curvature of the a, 0s. w dependence with increasing w that 
occurs for large w (figure 6) is responsible for the large-frequency asymptotic behaviour 
of a,; this change in curvature occurs at values of w larger than those considered by 
Gresho & Sani (1970). 

3.2. Nonlinear properties of modulated convection 
Horizontally averaged properties of both synchronous and subharmonic convection 
rolls exhibit the period of the applied forcing. For example, the kinetic energy of 
the subharmonic rolls shown in figure 7(a) is synchronous with the forcing, while the 
velocity field just reverses its sign in the second half of the subharmonic cycle. 
The kinetic energy decreases very quickly as the fluid becomes almost stagnant in the 
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FIGURE 8. (a) Streamlines and isotherms of subharmonic convection at R = 30000, P = 7, E = 3.162, 
w = 316.2, 01 = 01, = 5.0. The plots, proceeding downward at equal steps in time, cover one 
modulation period. In the next modulation period the pattern is the same except for a half- 
wavelength shift in the x-direction. (b) Streamlines and isotherms of synchronous convection at R = 
40000, P = 7, E = 3.162, o = 316.2, 01 = a, = 2.9. The plots, proceeding downward at equal steps 
in time, cover a full modulation period. The pattern is identical in the next modulation period. 

process of velocity reversal. It is evident from figure 7(a) that some sort of temporal 
transition has occurred at the highest Rayleigh number. The corresponding variation 
of the Nusselt number shown in figure 7(b )  is much smoother because of the damping 
influence of thermal diffusion. The Nusselt number shown in the figure is the 
normalized horizontally averaged heat flux in the convective state and it is given by 

(3.2) 

The changes in the velocity field and the temperature field for the parameter values 
used in figure 7 are shown in figure 8(a). A single velocity reversal occurs during the 
modulation period shown in this figure. It is difficult to capture the moment of 

vx( - 1)" [6Rovcos v w t )  + l;Bov sin ~ 4 1 .  R N u =  1-c 
Bv 
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FIGURE 9. (a) 
01 = uc = 2.9. 
(b) Similar to 
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Kinetic energy of synchronous convection us. wt/2n for P = 7, 6 = 3.162, w = 316.2, 
R (from the bottom to top) = 2100,2200,2500, 3000, 5000, 10000,20000 and 40000. 
(a) but for the Nusselt number. 

0 0.2 0.4 0.6 0.8 1 .o 
mtl2n 

Kinetic energy of synchronous convection us. wt/2n for P = 7, 6 = 3.162, w = 316.2, 
R (from the bottom to top) = 2100,2200,2500, 3000, 5000, 10000,20000 and 40000. 
(a) but for the Nusselt number. 

changeover in the direction of the velocity field since it occurs rather suddenly and 
simultaneously throughout the layer. The subharmonic motions shown in figure 8 (a) 
repeat every second modulation period. 

The variation in time over one modulation period for the synchronous case is shown 
for similar parameter values in figure 8(b). The synchronous motions shown in figure 
8(b)  repeat in the next modulation period. The direction of the velocity also reverses 
itself, twice within one period in this case, but there is no symmetry between the two 
states. Flow reversal in the synchronous case is related to the reversal in sign of (1 + e 
cos wt) for E > 1. The lack of symmetry of (1 + ecos wt) about zero accounts for the 
asymmetry in the synchronous states before and after velocity reversal. The two 
corresponding dips in the kinetic energy are clearly seen in figure 9(a). In figure 9(b), 
the Nusselt number shows a rather smooth dependence because the periods are short 
in comparison to the thermal diffusion time. 
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FIGURE 10. Time-averaged Nusselt number of synchronous two-dimensional convection as a function 

of Rayleigh number. Numbers on the curves are values of ( E ,  w).  P = 7 except as noted. 

5 c / 
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i x  loz 103 104 105 
R 

FIGURE 11.  Time-averaged Nusselt number of subharmonic convection us. R for P = 7. Long dashed 
line o = 100, e = 3.162. Solid lines (from left to right) o = 316.2, and e = 100,31.62,10,3.162. Short 
dashed lines (from left to right) w = 1000, and e = 100, 31.62, 10. Medium dashed line (from left to 
right) w = 3162, and E = 1000, 316.2, 100. 

Figure 10 shows the time-averaged Nusselt number of synchronous two-dimensional 
convection as a function of Rayleigh number for various values of o and E. For small 
E and large w the results differ little from unmodulated convection. As o is decreased 
from a large value at fixed E ,  the Nusselt number decreases, mainly due to an increase 
in the critical Rayleigh number for onset of convection. For large values of e the 
Nusselt number first increases with increasing Rayleigh number, but then begins to 
decrease as is evident from the lowest four curves in figure 10. This behaviour is most 
clear in the lowest curve for E = 3.162 and o = 100, for which convection disappears 
completely at a Rayleigh number of about 5 x lo3. 
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104 
R 

FIGURE 12. Time-averaged Nusselt number of subharmonic convection versus Rayleigh number for 
different Prandtl numbers. Long dashed lines correspond to P = 7, solid lines to P = 2.5, and short 
dashed lines to P = 0.71. The left (right) curve of each pair corresponds to E = lOO(10) o = 1000 
(316.2). 

Time-averaged Nusselt numbers of subharmonic convection for P = 7 are shown in 
figure 11. The curves are similar for different values of E at a fixed value of the 
frequency. All curves exhibit a steep initial increase of the Nusselt number with the 
Rayleigh number. For the smallest value of w shown, the Nusselt number then quickly 
bends over and levels off at about 2.5. The bending over takes place at a higher Nusselt 
number of about 3 for the next value of w = 316.2. For w = 1000 this bending over 
is much less pronounced and, at least for two of the curves, is followed by an inflexion 
point and a further rapid increase in Nusselt number versus Rayleigh number. At w = 
3162 the bending over is no longer noticeable and it is possible that again an inflexion 
point will occur. It was not possible, however, to obtain reliable numerical results for 
Nusselt numbers higher than those shown in figure 11. The truncation parameter 
necessary for calculations of the results shown in figure 11 (and figure 12 as well) 
typically increases with increasing Nusselt number, and all curves were calculated with 
the highest possible truncation parameter, N =  16. At N =  16 the rank of the 
coefficient matrix is 1368 and a typical solution of six iterations requires about 10 hours 
of computer time on a Microvax I11 (3500). 

The influence of Prandtl number P on the heat transport of subharmonic convection 
can be inferred from figure 12. The variation of the heat transport with P is not as 
smooth as in the case of convection without modulation, even if one takes into account 
the dependence of the onset of convection on the Prandtl number. For example, the 
second solid curve in figure 12 exhibits a surprising bump which could indicate a 
resonance phenomenon near the Rayleigh number of about 2.5 x lo4. It certainly does 
not represent a numerical effect since the heat transports computed with the 
truncations N =  12, 14, and 16 yield coincident results within the thickness of the 
curves of figure 12. The resonance could be related to the BE3-blob instability 
mentioned by Bolton, Busse & Clever (1986), which corresponds to three hot blobs 
circulating around the convection roll. However, a detailed analysis establishing such 
a connection has not been made. 
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-R 
FIGURE 13. Time-averaged Nu us. - R for convection in a modulated fluid layer heated from above. 
The three leftmost solid lines correspond to (from left to right) subharmonic convection with w = 
3162, and E = lo4, lo3, loz. Medium dashed lines (from left to right) are for w = 1000, and E = los, 
lo2, 10. Short dashed lines (from left to right) are for w = 316.2 and E = loz, 10. The two rightmost 
solid curves correspond to synchronous convection and e = 4.84, o = 220 (left) and E = 2.5, o = 500 
(right). Note the emergence of subcritical synchronous convection for E = 4.84, w = 220. 

Time-averaged Nusselt numbers for convection in a modulated fluid layer heated 
from above are shown in figure 13. The curves for subharmonic convection at large 8 

and o are quite similar to those presented in figure 11. Indeed, when the imposed 
oscillating gravitational field is large compared to gravity, the cases of heating from 
above and below become identical. This is already apparent in the results for the onset 
of subharmonic convection at large E and o as shown in figures 1 and 5. Synchronous 
convection in the heated-from-above case, however, has no analogous counterpart in 
the heated-from-below case. For heating from below, synchronous convection 
represents a mere quantitative modification of unmodulated convection unless 6Fr = 
ewP becomes rather large. It is interesting to note the emergence of subcritical 
synchronous convection for E = 4.84 and w = 220, which corresponds to SFr = 
Attempts to extend these results to lower values of 6Fr or to lower values of w at 
constant 6Fr = have not been successful. The numerical solutions for these other 
parameter values did not converge. 

Typical streamline patterns and isotherms for subharmonic convection in a 
modulated layer heated from above are shown in figure 14(a). As can be seen by 
comparing with figure 8, the streamlines and isotherms resemble those in the heated- 
from-below case. Streamlines and isotherms of synchronous convection in a modulated 
fluid layer heated from above are shown in figure 14(b). The flow reversal that occurs 
during a short part of the cycle also takes place in the heated-from-below case for 
larger values of E and o. The nearly horizontal alignment of the isotherms for a large 
portion of the cycle indicates the low amplitude of the convective motions. A sudden 
eruption of the thermal plume which provides most of the heat transport occurs from 
this nearly quiescent state. 
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3.3. Stability of synchronous convection to subharmonic disturbances 
Using the procedure outlined in 42.3, we have investigated the stability of synchronous 
two-dimensional oscillatory convection to subharmonic disturbances. In this pro- 
cedure, only disturbances with the same horizontal structure and the same time 
periodicity as the nonlinear solution are considered. The stability analysis is thus 
limited to disturbances with the same basic wavenumber or multiples thereof as the 
synchronous convection, Although this stability analysis is incomplete and does not 
consider the transition to a quasi-periodic state, it is useful for comparing the relative 
stability of synchronous and subharmonic convection. The results show a transition 
from synchronous to subharmonic convection at a Rayleigh number somewhat higher 
than the extension of the curves for subharmonic onset into the synchronous regime 
in figures 1 and 3. The fact that the presence of finite-amplitude synchronous 
convection causes only a small delay in the onset of subharmonic convection indicates 
a strong preference for the latter mode of convection. No transition of the opposite 
kind, from subharmonic to synchronous convection, has been found for increasing 
Rayleigh number. 

4. Concluding remarks 
Our attempt at a reasonably systematic investigation of nonlinear convection in a 

layer subject to an oscillating gravity force has revealed a number of interesting 
features which may stimulate further experimental research on this problem. A main 
result is the possibility of severe reductions of the convective heat transport for certain 
values of the parameters as indicated in figure 10. For other parameter values the heat 
transport may be enhanced in comparison with the unmodulated case through the 
effects of resonance. A question that could not be answered by the theoretical analysis 
of this paper is the stability of the two-dimensional solutions with respect to three- 
dimensional disturbances. Obviously, as is well known from the case of steady gravity, 
convection rolls are likely to become unstable through various mechanisms as the 
Rayleigh number is increased beyond the critical value. But from the available 
information in the literature there is little evidence that the stability of rolls is much 
reduced by the presence of an oscillatory component of gravity. The competition 
between rolls and hexagons that is observed in the analogous experiments with a time- 
modulated boundary temperature (Meyer et d. 1988; Meyer, Cannell & Ahlers 1992) 
is clearly caused by the asymmetry introduced by the oscillatory boundary condition. 

Even in the case of the layer heated from above, rolls are likely to be the preferred 
form of convection. The close analogy of this problem with the Faraday (1831) 
problem of surface waves induced by an oscillating gravity field in a horizontal fluid 
layer could suggest a preference for the same kind of pattern. While square patterns are 
typically observed in the latter problem (Ezerskii, Rabinovich & Korotin 1985; 
Douady & Fauve 1988; Ramshankar & Gollub 1991, and earlier papers referenced 
therein), preliminary computations for the symmetric case treated here have indicated 
the stability of rolls with respect to square-pattern disturbances. 

The research reported in this paper was supported by the National Science 
Foundation under Grant CTS8915442. The authors thank N. Anderson for her 
assistance in the preparation of this manuscript. 
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